Skip to content

Class Connection

Connection class can interact with a dataset with create, close, destroy, export, graph, load, and query methods.

What is a Connection class?

A Connection class has three attributes:

Name Type Description Default
datastore string A backend datastore, i.e., 'rdflib' or 'duckdb' REQUIRED
dataset string Name of the dataset. Note that ':memory:' is a reserved value for datasets that exist only in memory REQUIRED
conn object A DuckPyConnection object OR a GeistGraph object None

How to instantiate a Connection class?

If the dataset exists, the Connection class can be instantiated using its connect method:

# create a Connection object to an existing dataset named test
connection = geist.Connection.connect(datastore='duckdb', dataset='test')

If the dataset does not exist, there are two approaches to create and connect:

Approach 1: use the create function, then initialize the Connection class
create function

create function can create a new dataset on disk or in memory.

Parameters description for create():

Name Type Description Default
datastore string A backend datastore, i.e., 'rdflib' or 'duckdb' REQUIRED
dataset string Name of the dataset to be created. Note that ':memory:' is a reserved value for datasets that exist only in memory REQUIRED
inputfile string A file to be loaded REQUIRED
inputformat string Format of the file to be loaded REQUIRED
isinputpath bool True if the inputfile is the file path, otherwise the inputfile is the content REQUIRED
config dict A dictionary with configurations for certain backend store see below

Description for the config parameter:

datastore: duckdb
Name Type Description Default
table string Name of the table to be created 'df'
Example 1: create a test SQL dataset on disk from a string

The .geistdata/duckdb/test.duckdb file is created and a DuckDBPyConnection object is returned.

import geist

csv_str = """
v1,v2,v3
1,2,3
4,5,6
7,8,9
"""

# Create a DuckPyConnection object
conn = geist.create(datastore='duckdb', dataset='test', inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})
Example 2: create a test SQL dataset on disk from a file

The .geistdata/duckdb/test.duckdb file is created and a DuckDBPyConnection object is returned.

Here is the test.csv file:

v1,v2,v3
1,2,3
4,5,6
7,8,9

Code:

import geist

# Create a DuckPyConnection object
conn = geist.create(datastore='duckdb', dataset='test', inputfile="test.csv", inputformat="csv", isinputpath=True, config={"table": "df"})

Example 3: create a SQL dataset in memory from a string

A DuckDBPyConnection object is returned.

import geist

csv_str = """
v1,v2,v3
1,2,3
4,5,6
7,8,9
"""

# Create a DuckPyConnection object
conn = geist.create(datastore='duckdb', dataset=':memory:', inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})
Example 4: create a SQL dataset in memory from a file

A DuckDBPyConnection object is returned.

Here is the test.csv file:

v1,v2,v3
1,2,3
4,5,6
7,8,9

Code:

import geist

# Create a DuckPyConnection object
conn = geist.create(datastore='duckdb', dataset=':memory:', inputfile="test.csv", inputformat="csv", isinputpath=True, config={"table": "df"})

datastore: rdflib
Name Type Description Default
colnames string Column names of triples with the format of [[subject1, predicate1, object1], [subject2, predicate2, object2], ...] REQUIRED when inputformat='csv'
infer string Inference to perform on update, i.e., 'none', 'rdfs', 'owl', or 'rdfs_owl' 'none'
Example 1: create a test RDF dataset on disk from a string

The .geistdata/rdflib/test.pkl file is created and a GeistGraph object is returned.

import geist

csv_str = """
subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"
"""

# Create a GeistGraph object: a dictionary with 'rdf_graph' and 'infer' keys
conn = geist.create(datastore='rdflib', dataset='test', inputfile=csv_str, inputformat="csv", isinputpath=False, config={"colnames": "[['subject', 'predicate', 'object']]"})
Example 2: create a test RDF dataset on disk from a file

The .geistdata/rdflib/test.pkl file is created and a GeistGraph object is returned.

Here is the test.csv file:

subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"

Code:

import geist

# Create a GeistGraph object: a dictionary with 'rdf_graph' and 'infer' keys
conn = geist.create(datastore='rdflib', dataset='test', inputfile="test.csv", inputformat="csv", isinputpath=True, config={"colnames": "[['subject', 'predicate', 'object']]"})

Example 3: create a RDF dataset in memory from a string

A GeistGraph object is returned.

import geist

csv_str = """
subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"
"""

# Create a GeistGraph object: a dictionary with 'rdf_graph' and 'infer' keys
conn = geist.create(datastore='rdflib', dataset=':memory:', inputfile=csv_str, inputformat='csv', isinputpath=False, config={"colnames": "[['subject', 'predicate', 'object']]"})
Example 4: create a RDF dataset in memory from a file

A GeistGraph object is returned.

Here is the test.csv file:

subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"

Code:

import geist

# Create a GeistGraph object: a dictionary with 'rdf_graph' and 'infer' keys
conn = geist.create(datastore='rdflib', dataset=':memory:', inputfile='test.csv', inputformat='csv', isinputpath=True, config={"colnames": "[['subject', 'predicate', 'object']]"})

import geist

csv_str = """
v1,v2,v3
1,2,3
7,8,9
"""

# create a Connection object
conn = geist.create(datastore='duckdb', dataset=':memory:', inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})
connection = geist.Connection(datastore='duckdb', dataset=':memory:', conn=conn)
Approach 2: use the create method of the Connection class
create method of the Connection class

create method of the Connection class creates a new dataset on disk or in memory. It is very similar to the create() function. The only difference is that the datastore and the dataset parameters do not need to be passed as they have already been specified while initialzing the Connection class.

Parameters description for create method of the Connection class:

Name Type Description Default
inputfile string A file to be loaded REQUIRED
inputformat string Format of the file to be loaded REQUIRED
isinputpath bool True if the inputfile is the file path, otherwise the inputfile is the content REQUIRED
config dict A dictionary with configurations for certain backend store see below

Description for the config parameter:

datastore: duckdb
Key Type Description Default
table string Name of the table to be created 'df'
Example 1: create a test SQL dataset from a string

The .geistdata/duckdb/test.duckdb file is created and a Connection instance is returned.

import geist

csv_str = """
v1,v2,v3
1,2,3
4,5,6
7,8,9
"""

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset='test')
connection.create(inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})
Example 2: create a test SQL dataset from a file

The .geistdata/duckdb/test.duckdb file is created and a Connection instance is returned.

Here is the test.csv file:

v1,v2,v3
1,2,3
4,5,6
7,8,9

Code:

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset='test')
connection.create(inputfile="test.csv", inputformat="csv", isinputpath=True, config={"table": "df"})

Example 3: create a SQL dataset in memory from a string

A Connection instance is returned.

import geist

csv_str = """
v1,v2,v3
1,2,3
4,5,6
7,8,9
"""

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:')
connection.create(inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})
Example 4: create a SQL dataset in memory from a file

A Connection instance is returned.

Here is the test.csv file:

v1,v2,v3
1,2,3
4,5,6
7,8,9

Code:

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:')
connection.create(inputfile="test.csv", inputformat="csv", isinputpath=True, config={"table": "df"})

datastore: rdflib
Key Type Description Default
colnames string Column names of triples with the format of [[subject1, predicate1, object1], [subject2, predicate2, object2], ...]. REQUIRED when inputformat='csv')
infer string Inference to perform on update, i.e., 'none', 'rdfs', 'owl', or 'rdfs_owl' 'none'
Example 1: create a test RDF dataset from a string

The .geistdata/rdflib/test.pkl file is created and a Connection instance is returned.

import geist

csv_str = """
subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"
"""

# Create a Connection instance
connection = geist.Connection(datastore='rdflib', dataset='test')
connection.create(inputfile=csv_str, inputformat="csv", isinputpath=False, config={"colnames": "[['subject', 'predicate', 'object']]"})
Example 2: create a test RDF dataset from a file

The .geistdata/rdflib/test.pkl file is created and a Connection instance is returned.

Here is the test.csv file:

subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"

Code:

import geist

# Create a Connection instance
connection = geist.Connection(datastore='rdflib', dataset='test')
connection.create(inputfile="test.csv", inputformat="csv", isinputpath=True, config={"colnames": "[['subject', 'predicate', 'object']]"})

Example 3: create a RDF dataset in memory from a string

A Connection instance is returned.

import geist

csv_str = """
subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"
"""

# Create a Connection instance
connection = geist.Connection(datastore='rdflib', dataset=':memory:')
connection.create(inputfile=csv_str, inputformat="csv", isinputpath=False, config={"colnames": "[['subject', 'predicate', 'object']]"})
Example 4: create a RDF dataset in memory from a file

A Connection instance is returned.

Here is the test.csv file:

subject,predicate,object
<http://example.com/drewp>,<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,<http://xmlns.com/foaf/0.1/Person>
<http://example.com/drewp>,<http://example.com/says>,"Hello World"

Code:

import geist

# Create a Connection instance
connection = geist.Connection(datastore='rdflib', dataset=':memory:')
connection.create(inputfile="test.csv", inputformat="csv", isinputpath=True, config={"colnames": "[['subject', 'predicate', 'object']]"})

import geist

csv_str = """
v1,v2,v3
1,2,3
7,8,9
"""

# create a Connection object
connection = geist.Connection(datastore='duckdb', dataset=':memory:')
connection.create(inputfile=csv_str, inputformat="csv", isinputpath=False, config={"table": "df"})

How to interact with a Connection class?

Once a Connection class is instantiated, we can interact with it using close, destroy, export, graph, load, and query methods.

close method

close method of the Connection class is to close the dataset connection, i.e., reset all attributes to None. No parameters are required.

Example: close the connection

Suppose connection is the instance of the Connection class.

# Close the connection
connection.close()
destroy method

destroy method of the Connection class is to delete the dataset and close the dataset connection.

Example: delete the dataset and close the connection

Suppose connection is the instance of the Connection class for a DuckDB dataset named test stored on disk. The following code will delete the .geistdata/duckdb/test.duckdb file.

# Delete the dataset and close the connection
connection.destroy()
export method

export method of the Connection class exports a dataset. It is very similar to the export() function. The only difference is that the datastore and the dataset parameters do not need to be passed as they have already been specified while initialzing the Connection class.

Parameters description for export method of the Connection class:

Name Type Description Default
hasoutput bool True to export as a file or print it out REQUIRED
config dict A dictionary with configurations for certain backend store see below

Description for the config parameter:

datastore: duckdb
Key Type Description Default
outputroot string Path of the directory to store the exported table './'
outputfile string Path of the file to store the exported table None
outputformat string Format of the exported table, i.e., 'csv' or 'json' 'csv'
table string Name of the table to be exported 'df'
Example 1: export all rows of the df table in test dataset on disk

There exist a file with the path of .geistdata/duckdb/test.duckdb. The following code returns a Pandas data frame named data.

import geist

# Create a Connection instance
connection = geist.Connection.connect(datastore='duckdb', dataset='test')
# Export the df table of the test dataset
data = connection.export(hasoutput=False, config={'table': 'df'})
Example 2: export all rows of the df table in test dataset in memory

Suppose conn is a DuckPyConnection object points to a DuckDB dataset in memory. The following code returns a Pandas data frame named data.

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:', conn=conn)
# Export the df table of the test dataset
data = connection.export(hasoutput=False, config={'table': 'df'})
datastore: rdflib
Key Type Description Default
outputroot string Path of the directory to store these exported triples './'
outputfile string Path of the file to store these exported triples None
outputformat string Format of the exported triples, i.e., 'json-ld', 'n3', 'nquads', 'nt', 'hext', 'pretty-xml', 'trig', 'trix', 'turtle', 'longturtle', or 'xml' 'nt'
Example 1: export all triples of the test dataset on disk

There exist a file with the path of .geistdata/rdflib/test.pkl. The following code returns a string named data.

import geist

# Create a Connection instance
connection = geist.Connection.connect(datastore='rdflib', dataset='test')
# Export all triples of the test dataset as a string with the 'nt' format
data = connection.export(hasoutput=False)
Example 2: export all triples of the test dataset in memory

Suppose conn is a GeistGraph object points to a RDF dataset in memory. The following code returns a string named data.

import geist

# Create a Connection instance
connection = geist.Connection(datastore='rdflib', dataset=':memory:', conn=conn)
# Export the df table of the test dataset
data = connection.export(hasoutput=False)
graph method

graph method of the Connection class exports a dataset. Only rdflib is supported for now. It is very similar to the graph() function. The only difference is that the datastore and the dataset parameters do not need to be passed as they have already been specified while initialzing the Connection class.

Parameters description for graph method of the Connection class:

Name Type Description Default
datastore string A backend datastore, i.e., 'rdflib' or 'duckdb' REQUIRED`
dataset string OR GeistGraph object Dataset to load an object: (1) A string indicates the name of the dataset stored on disk OR (2) a GeistGraph object for dataset in memory REQUIRED
hasoutput bool True to export as a file or print it out REQUIRED
config dict A dictionary with configurations for certain backend store. see below

Description for the config parameter:

datastore: rdflib
Name Type Description Default
rankdir string Direction of the graph: 'TB' or 'BT' or 'LR' or 'RL' 'TB'
mappings string File of the mappings to shorten text (str): path of a JSON file, where the key is the original text and the value is the shorter text None
on string Column(s) to be mapped None
samecolor bool True to use the same color for same edges True
outputroot string Path of the directory to store the graph './'
outputfile string Path of the file without extension to store the graph 'res'
outputformats list Format of the graph: 'none' or 'svg' or 'png' or 'gv' ['none']
Example 1: visualize the test dataset on disk

There exist a file with the path of .geistdata/duckdb/test.duckdb. The following code visualizes the test dataset as a graph and saves it as the res.svg file.

import geist

# Create a Connection instance
connection = geist.Connection.connect(datastore='duckdb', dataset='test')
# Visualize the test dataset
connection.graph(hasoutput=True, config={'outputformats': ['svg']})
Example 2: visualize the test dataset in memory

Suppose conn is a DuckPyConnection object points to a DuckDB dataset in memory. The following code visualizes the test dataset as a graph and saves it as the res.svg file.

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:', conn=conn)
# Visualize the test dataset
connection.graph(hasoutput=True, config={'outputformats': ['svg']})
load method

load method of the Connection class imports data into an existing dataset on disk or in memory. It is very similar to the load() function. The only difference is that datastore, dataset, and inmemory parameters do not need to be passed as they have already been specified while initialzing the Connection class.

Parameters description for load method of the Connection class:

Name Type Description Default
inputfile string A file to be loaded REQUIRED
inputformat string Format of the file to be loaded REQUIRED
isinputpath bool True if the inputfile is the file path, otherwise the inputfile is the content REQUIRED
config dict A dictionary with configurations for certain backend store see below

Description for the config parameter:

datastore: duckdb
Name Type Description Default
table string Name of the table to be loaded REQUIRED
Example: load a table into the test dataset

There exist a file with the path of .geistdata/duckdb/test.duckdb. The csv_str will be imported into the df table. Note that the order of table columns should be consistent with the imported data.

import geist

csv_str = """
v1,v2,v3
1,1,1
2,2,2
3,3,3
"""

# Create a Connection instance
connection = geist.Connection.connect(datastore='duckdb', dataset='test')
# Load csv_str to the df table of the test dataset
connection.load(inputfile=csv_str, inputformat='csv', isinputpath=False, config={'table': 'df'})
datastore: rdflib
Name Type Description Default
colnames string Column names of triples with the format of [[subject1, predicate1, object1], [subject2, predicate2, object2], ...] REQUIRED when inputformat='csv'
Example: load a triple into the test dataset

There exist a file with the path of .geistdata/rdflib/test.pkl. The csv_str will be imported into the test RDF dataset.

import geist

csv_str = """
subject,predicate,object
<http://example.com/drewp>,<http://example.com/feels>,"Happy"
"""

# Create a Connection instance
connection = geist.Connection.connect(datastore='rdflib', dataset='test')
# Load csv_str to the test dataset
connection.load(inputfile=csv_str, inputformat='csv', isinputpath=False, config={"colnames": "[['subject', 'predicate', 'object']]"})
query method

query method of the Connection class can query a dataset stored on disk or in memory. It is very similar to the query() function. The only difference is that the datastore and the dataset parameters do not need to be passed as they have already been specified while initialze the Connection class.

Parameters description for query method of the Connection class:

Name Type Description Default
inputfile string File containing the query REQUIRED
isinputpath bool True if the inputfile is the file path, otherwise the inputfile is the content REQUIRED
hasoutput bool True to store the query results as a CSV file or print them out REQUIRED
config dict A dictionary with configurations when hasoutput=True see below

Description for the config parameter:

Name Type Description Default
outputroot string Path of the directory to store the query results './'
outputfile string Path of the file to store the query results None
Example 1: all rows of the df table in test dataset on disk (query from a string)

There exist a file with the path of .geistdata/duckdb/test.duckdb. The following code returns a Pandas data frame named res with query results.

import geist

# Create a Connection instance
connection = geist.Connection.connect(datastore='duckdb', dataset='test')
# Query the df table of the test dataset
res = connection.query(inputfile="SELECT * FROM df;", isinputpath=False, hasoutput=False)
Example 2: all rows of the df table in test dataset on disk (query from a file)

There exist a file with the path of .geistdata/duckdb/test.duckdb. The following code returns a Pandas data frame named res with query results.

Here is the query.txt file:

SELECT * FROM df;

Code:

import geist

# Create a Connection instance
connection = geist.Connection.connect(datastore='duckdb', dataset='test')
# Query the df table of the test dataset
res = connection.query(inputfile="query.txt", isinputpath=True, hasoutput=False)

Example 3: all rows of the df table in test dataset in memory (query from a string)

Suppose conn is a DuckPyConnection object points to a DuckDB dataset in memory. The following code returns a Pandas data frame named res with query results.

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:', conn=conn)
# Query the df table of the test dataset
res = connection.query(inputfile="SELECT * FROM df;", isinputpath=False, hasoutput=False)
Example 4: all rows of the df table in test dataset in memory (query from a file)

Suppose conn is a DuckPyConnection object points to a DuckDB dataset in memory. The following code returns a Pandas data frame named res with query results.

Here is the query.txt file:

SELECT * FROM df;

Code:

import geist

# Create a Connection instance
connection = geist.Connection(datastore='duckdb', dataset=':memory:', conn=conn)
# Query the df table of the test dataset
res = connection.query(inputfile="query.txt", isinputpath=True, hasoutput=False)