Tag map
The map
replaces the original string (JSON string) on selected columns (if provides) with the shorter ones based on the given mappings. By default, the given string is a file path. However, it can be updated by setting the isfilepath
field to False. A Pandas DataFrame will be returned. Here are parameters of the map
tag:
Name | Description |
---|---|
isfilepath |
A bool value to denote if the given data is a file path or not (by default: True , which denotes the given data is a file path) |
mappings |
File of the mappings to shorten text (str): path of a JSON file, where the key is the original text and the value is the shorter text. |
on |
A column or a list of selected columns. All columns will be selected by default (None ) |
data.json
{
"v1": {"0":"test_a1","1":"test_b1","2":"test_c1"},
"v2": {"0":"test_a2","1":"test_b2","2":"test_c2"},
"v3": {"0":"test_a3","1":"test_b3","3":"test_c3"}
}
mapping.json
{"test_": ""}
Example 1: replace all columns
{%- map mappings="mappings.json" as res %} data.json {% endmap %}
{{ res }}
Expected output:
v1,v2,v3
a1,a2,a3
b1,b2,b3
c1,c2,c3
Example 2: replace selected columns
{% map mappings="mappings.json", on=["v1","v2"] as res %} data.json {% endmap %}
{{ res }}
Expected output:
v1,v2,v3
a1,a2,test_a3
b1,b2,test_b3
c1,c2,test_c3
If only "v1" column need to be replaced, you can replace on=["v1","v2"]
with on="v1"
.