
Meng Li, Timothy McPhillips, Bertram Ludäscher
School of Information Sciences, University of Illinois at Urbana-Champaign

Geist: a multimodal data transformation, query, and reporting language

References and resources
[1] Geist PyPI: https://pypi.org/project/geist-p
[2] Geist GitHub: https://github.com/CIRSS/geist-p
[3] SDTH: cosmos-
conference.org/2024/slides/13_Alter_SDTH_COSMOS.pdf
[4] TRACE: transparency-certified.github.io

Acknowledgements
This material is based upon work supported by the
National Science Foundation under Grant No. 2209628.

Examples
EX1: Modular SPARQL
This SPARQL query, adopted from the Structured Data
Transformation History (SDTH) project[3], is used to
extract program steps that use the “PPHHSIZE” variable
directly and indirectly.

Method 1: a long SPARQL query without using Geist

Method 2: modular SPARQL query using Geist
1. Define reusable templates (chunks) in the

“templates.geist” file

2. Tell Geist where these chunks are by adding the use
tag to the Geist template

3. Write a shorter SPARQL query

EX2: Query over DuckDB tables and RDF triples
A citation network, which describes the citations within a
collection of papers, is stored as an RDF dataset. For
example, the triple “:P1 :cites :P2 .” denotes paper P1 cites
paper P2. Also, there is a table named paper_author
stored in DuckDB. Assume both datasets (databases)
named demo.

For each paper written by author A1, how can we find all
papers that cite it, both directly and indirectly?

An SQL query of the paper_author table stored in
DuckDB finds all papers written by author A1.

A SPARQL query of the RDF dataset finds all papers that
directly or indirectly cite a particular paper (here, paper
P1).

With Geist, these queries can be combined in a single
declarative Geist template.

Application
The TRAnsparency CErtified (TRACE) project[4] aims at
addressing the problem of computational reproducibility
by certifying the original execution of a computational
workflow rather than requiring confirmation of
reproducibility via re-execution. The details and
certification of a particular computation are represented
in a Transparent Research Object (TRO) described by an
RDF vocabulary (TROV) that can be queried with
SPARQL. We use Geist to perform queries on TROs to
yield human readable reports describing the digital
artifacts (data, code, notebooks, container images)
employed by the described workflow.

How Geist works
• Uses database Python APIs. Employs Python

packages such as RDFLib and DuckDB to access and
query datasets.

• Builds on the Jinja template engine. The Jinja
template supports predefined tags. It also supports
recursive nesting of tags with any number of layers.

• Adds custom templating capabilities. For
example, before rendering a Jinja template, Geist
parses the text, finds all files declared via use tags,
generate classes for each block of template code within
these files, and adds these classes to the Jinja
environment as extensions to enable custom tags.

SELECT distinct ?psource ?oname
WHERE {
 {
 ?pstep sdth:usesVariable+ ?o .
 ?pstep sdth:hasSourceCode ?psource .
 ?o sdth:hasName ?oname .
 FILTER (?oname = "PPHHSIZE")
 }
 UNION
 {
 ?pstep sdth:usesVariable+ ?s2 .
 ?pstep sdth:hasSourceCode ?psource .

 {
 SELECT distinct ?s2 ?oname
 WHERE
 { ?s2 sdth:wasDerivedFrom+ ?o2 .
 ?s2 sdth:hasName ?oname .
 ?o2 sdth:hasName ?o2name .
 FILTER (?o2name = "PPHHSIZE")
 }
 }
 }
} ORDER BY ?psource ?oname

Introduction
• A new templating language for declarative data

manipulation, query, and report generation.
• Aims to enable developers to use whatever language or

tools they like regardless of where the data is stored.

Why Geist?
Template-based. Specify your needs in the declarative
Geist language rather than procedural Python functions.

Active tags. Combine operation tags (e.g., create,
destroy, load, and query) with layout tags (e.g., html,
graph, img, and table) to manage, manipulate, query, and
present data.

Reuse templates as new tags. Easily define your own
tag in a Geist template format through files within the use
tag.

Modularize complex queries. Split long (SQL,
SPARQL, Cypher, etc.) queries into small chunks for
readability, maintainability, and reusability.

Manage databases. Besides generating readable
reports, Geist can perform inserts and updates on new or
existing datasets during template expansion, which
makes it a general-purpose data management language.

Augment query language expressiveness. Add
iteration, recursion, and conditional flow to queries while
maintaining comprehensibility.

Backend-agnostic queries. Choose the languages and
tools regardless of where the data is stored, e.g., SPARQL
to query tables stored in DuckDB.

Multimodal data manipulation. Compose and nest
queries over multiple query languages, e.g., embedding
query results from a relational database into a graph
query to retrieve information from a graph database.

Simple installation[1,2].

paper author
P1 A1
P1 A2
P1 A3
P2 A1
P2 A4

Table 1. First 5 rows of the “paper_author” table in the “demo” database. For
example, the first row means paper P1 is written by author A1.

Figure 3. Part of the TRO report generated by Geist.

{% template chunk_usesvariable %}
 {
 ?pstep sdth:usesVariable+ ?o .
 ?pstep sdth:hasSourceCode ?psource .
 ?o sdth:hasName ?oname .
 FILTER (?oname = "PPHHSIZE")
 }
{% endtemplate %}

{% template chunk_wasderivedfrom %}
 {
 ?s2 sdth:wasDerivedFrom+ ?o2 .
 ?s2 sdth:hasName ?oname .
 ?o2 sdth:hasName ?o2name .
 FILTER (?o2name = "PPHHSIZE")
 }
{% endtemplate %}

{% use “templates.geist” %}

SELECT distinct ?psource ?oname
WHERE {
 {% chunk_usesvariable %}
 UNION
 {
 ?pstep sdth:usesVariable+ ?s2 .
 ?pstep sdth:hasSourceCode ?psource .

 {
 SELECT distinct ?s2 ?oname
 WHERE {% chunk_wasderivedfrom %}
 }
 }
} ORDER BY ?psource ?oname

SELECT ?citing
WHERE {
 ?citing :cites+ :P1 .
}

pip install geist-p

Figure 1. An overview of Geist. Building on the Jinja and database Python
APIs, Geist provides “report”, “create”, “load”, “destroy”, “export”, “query”, and
“graph” commands. Among them, the “report” command relies on filters and
tags to expand a Geist template using datasets.

geist report << __END_TEMPLATE__

{% query "demo", datastore="duckdb",
 isfilepath=False as papers %}
 SELECT paper
 FROM paper_author
 WHERE author=‘A1’;
{% endquery %}

Author A1 has published the following papers:

{% for _, row in papers.iterrows() %}

 {% query "demo", datastore="rdflib",
 isfilepath=False as citations %}
 PREFIX : <http://demo.com/>
 SELECT ?citing
 WHERE {
 ?citing :cites+ :{{ row["paper"] }} .
 }
 {% endquery %}

 {{row["paper"]}} was cited directly / indirectly by:
 {% set citing_papers = citations["citing"].values %}
 {% for citing_paper in citing_papers %}
 {{ citing_paper }}
 {% endfor %}

{% endfor %}

__END_TEMPLATE__

cirss.github.io/geist-p

SELECT paper
FROM paper_author
WHERE author = ‘A1’;

